首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tetrameric architecture of the circadian clock protein KaiB. A novel interface for intermolecular interactions and its impact on the circadian rhythm
Authors:Hitomi Kenichi  Oyama Tokitaka  Han Seungil  Arvai Andrew S  Getzoff Elizabeth D
Institution:Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
Abstract:Cyanobacteria are among the simplest organisms that show daily rhythmicity. Their circadian rhythms consist of the localization, interaction, and accumulation of various proteins, including KaiA, KaiB, KaiC, and SasA. We have determined the 1.9-angstroms resolution crystallographic structure of the cyanobacterial KaiB clock protein from Synechocystis sp. PCC6803. This homotetrameric structure reveals a novel KaiB interface for protein-protein interaction; the protruding hydrophobic helix-turn-helix motif of one subunit fits into a groove between two beta-strands of the adjacent subunit. A cyanobacterial mutant, in which the Asp-Lys salt bridge mediating this tetramer-forming interaction is disrupted by mutation of Asp to Gly, exhibits severely impaired rhythmicity (a short free-running period; approximately 19 h). The KaiB tetramer forms an open square, with positively charged residues around the perimeter. KaiB is localized on the phospholipid-rich membrane and translocates to the cytosol to interact with the other Kai components, KaiA and KaiC. KaiB antagonizes the action of KaiA on KaiC, and shares a sequence-homologous domain with the SasA kinase. Based on our structure, we discuss functional roles for KaiB in the circadian clock.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号