首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The human L-pipecolic acid oxidase is similar to bacterial monomeric sarcosine oxidases rather than D-amino acid oxidases
Authors:G Dodt  D Kim  S Reimann  K McCabe  Stephen J Gould  S J Mihalik
Institution:1. Departments of Biological Chemistry and Pediatrics, Johns Hopkins, University School of Medicine, Baltimore, MD
2. Kennedy Kreiser Institute, Baltimore, MD
3. Institut fur Physiologische Chemie Ruhr-Universitat, Bochum, Germany
Abstract:L-Pipecolic acid oxidase activity is deficient in patients with peroxisome biogenesis disorders (PBDs). Because its role, if any, in these disorders is unknown, the authors cloned the human gene to order to further study its functions. BLAST search of the translated sequence showed greatest homology to Bacillus sp. NS-129 monomeric sarcosine oxidase. The purified enzyme could use either L-pipecolic acid or sarcosine as a substrate. No homology was found to the peroxisomal D-amino acid oxidases. A further comparison of L-pipecolic acid oxidase to the two D-amino acid oxidases in peroxisomes showed that the proteins differed in many ways. First, both D-amino acid oxidase and L-pipecolic acid oxidase showed no enzyme activity in liver from Zell-weger syndrome patients; D-aspartate oxidase activity was unchanged from control levels. Although all were targeted to peroxisomes, their targeting signals differed. No L-pipecolic acid oxidase was found in brain or other tissues outside of liver and kidney. The D-amino acid oxidases were similarly and more widely distributed. Finally, although D-amino acid degradation is limited to peroxisomes in mammals, L-pipecolic acid can be oxidized in either mitochondria or peroxisomes, or both.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号