Abstract: | Under anaerobic conditions in the light, active K influx inHydrodictyon africanum is supported by cyclic photophosphorylation.The use of selective inhibitors shows that, in the presenceof CO2, a considerable portion of the ATP used by the K pumpis supplied by noncyclic photophosphorylation. The rest of theATP in these conditions comes from cyclic photophosphorylation.This is true under light-limiting as well as light-saturatedconditions. If non-cyclic photophosphorylation is inhibited (by removalof carbon dioxide, by the addition of cyanide which interfereswith the carboxylation reaction, or by inhibition of photosystemtwo with DCMU or supplying only far-red light), the K influxat low light intensities is stimulated, and its characteristicsbecome those of a process powered by cyclic photophosphorylationalone. These results are interpreted in terms of a competitionfor ATP between K influx and CO2 fixation. Implicit in thisexplanation is a requirement for a switch of excitation energyabsorbed by photosystem one from cyclic photophosphorylationto non-cyclic photophosphorylation whenever conditions (presenceof CO2and photosystem two activity) allow CO2 fixation to occur. Further evidence for such a switch of excitation energy absorbedby photosystem one was obtained in experiments in which redand far-red light were applied separately and together. It wasfound that CO2 fixation showed the Emerson enhancement effect,while K influx (in the presence of CO2) shows a de-enhancement.This suggests that far-red light alone powers cyclic photophosphorylation;if red light is also present, some of the far-red quanta arediverted to non-cyclic photophosphorylation. The nature of the interaction between cyclic and non-cyclicphotophosphorylation is discussed in relation to these and otherpublished results. |