Noradrenaline Stimulation Unbalances the Phosphoinositide Cycle in Rat Cerebral Cortical Slices |
| |
Authors: | Enrique Claro John N. Fain Fernando Picatoste |
| |
Affiliation: | Departamento de Bioquímica y Biología Molecular, Universidad Autónoma de Barcelona, Spain;Department of Biochemistry, University of Tennessee, Memphis, Tennessee, U.S.A. |
| |
Abstract: | ![]() Abstract: Muscarinic cholinergic and α1-adrenoceptor-mediated stimulation of phosphoinositide hydrolysis in rat cerebral cortex were compared by measuring carbachol- and noradrenaline-induced accumulation of various intermediates of the phosphoinositide cycle. Unlike carbachol, noradrenaline in the presence of guanosine 5'- O -(3-thiotriphosphate) did not stimulate phospholipase C activity in brain cortical membranes. In cortical slices, the efficacy of noradrenaline to stimulate accumulation of 3H-inositol phosphates and [32P]phosphatidic acid was 2.5 to threefold that of carbachol. However, noradrenaline was less effective than carbachol in stimulating accumulation of [3H]CDP-diacylglycerol and resynthesis of phosphatidylinositol. This was not due to calcium inhibition of CTP:phosphatidate cytidyltransferase or to different lithium requirements for carbachol- and noradrenaline-stimulated accumulation of [3H]CDP-diacylglycerol. The noradrenaline-induced unbalance of the phosphoinositide cycle, which was most apparent at relatively high concentrations of calcium (2.5 m M ) in the incubation buffer, was qualitatively reproduced with ionomycin. The use of the α1a-subtype-selective adrenoceptor antagonists WB4101 and 5-methylurapidil revealed a single α1a-like component mediating the effects of noradrenaline. Our results suggest that the primary mechanism for phospholipase C activation by brain α1 adrenoceptors involves an increase in intracellular calcium concentration. |
| |
Keywords: | Phospholipase C Inositol phosphates Phosphoinositides Noradrenaline Carbachol CDP-diacylglycerol. |
|
|