首页 | 本学科首页   官方微博 | 高级检索  
     


Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes
Authors:Wassmann Katja  Niault Théodora  Maro Bernard
Affiliation:Laboratoire de Biologie Cellulaire du Développement, UMR7622, CNRS, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75005 Paris, France. katja.wassmann@snv.jussieu.fr
Abstract:BACKGROUND: The importance of mitotic spindle checkpoint control has been well established during somatic cell divisions. The metaphase-to-anaphase transition takes place only when all sister chromatids have been properly attached to the bipolar spindle and are aligned at the metaphase plate. Failure of this checkpoint may lead to unequal separation of sister chromatids. On the contrary, the existence of such a checkpoint during the first meiotic division in mammalian oocytes when homologous chromosomes are segregated has remained controversial. RESULTS: Here, we show that mouse oocytes respond to spindle damage by a transient and reversible cell cycle arrest in metaphase I with high Maturation Promoting Factor (MPF) activity. Furthermore, the mitotic checkpoint protein Mad2 is present throughout meiotic maturation and is recruited to unattached kinetochores. Overexpression of Mad2 in meiosis I leads to a cell cycle arrest in metaphase I. Expression of a dominant-negative Mad2 protein interferes with proper spindle checkpoint arrest. CONCLUSIONS: Errors in meiosis I cause missegregation of chromosomes and can result in the generation of aneuploid embryos with severe birth defects. In human oocytes, failures in spindle checkpoint control may be responsible for the generation of trisomies (e.g., Down Syndrome) due to chromosome missegregation in meiosis I. Up to now, the mechanisms ensuring correct separation of chromosomes in meiosis I remained unknown. Our study shows for the first time that a functional Mad2-dependent spindle checkpoint exists during the first meiotic division in mammalian oocytes.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号