首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modelling basic features of specificity in the binding of a dicationic steroid diamine to double-stranded oligonucleotides.
Authors:X W Hui  N Gresh  and B Pullman
Institution:Institut de Biologie Physico-Chimique, CNRS, Paris, France.
Abstract:An investigation of the intrinsically preferred binding modes of a steroid diamine, dipyrandium, to the double-stranded hexanucleotides d(TATATA)2, d(ATATAT)2, and d(CGCGCG)2 is carried out by the energy minimization procedure JUMNA. Several alternative binding modes are compared: groove binding in which the conformation of the oligonucleotide remains close to that of B-DNA, intercalation between base-pairs and interaction with variously kinked structures in which base pairs of dinucleoside steps open towards the groove in which the binding occurs. The favored binding configuration occurs at the d(TpA) step of the AT kinked nucleotides in which the kink opens the base pairs towards the minor groove. Thus, for the d(T1A2T3A4T5A6)2 sequences the preferred complexation involves the kink at the T3A4 step facing the cyclohexane rings A, B, and C of the ligand. For the d(A1T2A3T4A5T6)2 sequence, the kink occurs at the T2A3 step facing the cationic pyrrolidine ring linked to ring A. The binding of dipyrandium to d(CGCGCG)2 is found to be considerably less favourable than for either of the two (AT) sequences.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号