首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multimeric structure of PomA, a component of the Na+-driven polar flagellar motor of vibrio alginolyticus
Authors:Sato K  Homma M
Institution:Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
Abstract:Four integral membrane proteins, PomA, PomB, MotX, and MotY, are thought to be directly involved in torque generation of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. Our previous study showed that PomA and PomB form a complex, which catalyzes sodium influx in response to a potassium diffusion potential. PomA forms a stable dimer when expressed in a PomB null mutant. To explore the possible functional dependence of PomA domains in adjacent subunits, we prepared a series of PomA dimer fusions containing different combinations of wild-type or mutant subunits. Introduction of the mutation P199L, which completely inactivates flagellar rotation, into either the first or the second half of the dimer abolished motility. The P199L mutation in monomeric PomA also altered the PomA-PomB interaction. PomA dimer with the P199L mutation even in one subunit also had no ability to interact with PomB, indicating that the both subunits in the dimer are required for the functional interaction between PomA and PomB. Flagellar rotation by wild-type PomA dimer was completely inactivated by phenamil, a sodium channel blocker. However, activity was retained in the presence of phenamil when either half of the dimer was replaced with a phenamil-resistant subunit, indicating that both subunits must bind phenamil for motility to be fully inhibited. These observations demonstrate that both halves of the PomA dimer function together to generate the torque for flagellar rotation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号