首页 | 本学科首页   官方微博 | 高级检索  
     


Non-linear cancer classification using a modified radial basis function classification algorithm
Authors:Hong-Qiang?Wang  mailto:hqwang@iim.ac.cn"   title="  hqwang@iim.ac.cn"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,De-Shuang?Huang
Affiliation:(1) Intelligent Computation Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Science, P.O. Box 1130, , Hefei, Anhui, 230031, China;(2) Department of Automation, University of Science and Technology of China, Hefei, Anhui, China
Abstract:
Summary This paper proposes a modified radial basis function classification algorithm for non-linear cancer classification. In the algorithm, a modified simulated annealing method is developed and combined with the linear least square and gradient paradigms to optimize the structure of the radial basis function (RBF) classifier. The proposed algorithm can be adopted to perform non-linear cancer classification based on gene expression profiles and applied to two microarray data sets involving various human tumor classes: (1) Normal versus colon tumor; (2) acute myeloid leukemia (AML) versus acute lymphoblastic leukemia (ALL). Finally, accuracy and stability for the proposed algorithm are further demonstrated by comparing with the other cancer classification algorithms.
Keywords:cancer classification  DNA microarray dataset  gene expression profiles  radial basis function classifiers  simulated annealing algorithm
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号