首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of directed evolution approaches using the beta-glucuronidase model system
Authors:Rowe Lori A  Geddie Melissa L  Alexander Omar B  Matsumura Ichiro
Affiliation:Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
Abstract:Protein engineers can alter the properties of enzymes by directing their evolution in vitro. Many methods to generate molecular diversity and to identify improved clones have been developed, but experimental evolution remains as much an art as a science. We previously used DNA shuffling (sexual recombination) and a histochemical screen to direct the evolution of Escherichia coli beta-glucuronidase (GUS) variants with improved beta-galactosidase (BGAL) activity. Here, we employ the same model evolutionary system to test the efficiencies of several other techniques: recursive random mutagenesis (asexual), combinatorial cassette mutagenesis (high-frequency recombination) and a versatile high-throughput microplate screen. GUS variants with altered specificity evolved in each trial, but different combinations of mutagenesis and screening techniques effected the fixation of different beneficial mutations. The new microplate screen identified a broader set of mutations than the previously employed X-gal colony screen. Recursive random mutagenesis produced essentially asexual populations, within which beneficial mutations drove each other into extinction (clonal interference); DNA shuffling and combinatorial cassette mutagenesis led instead to the accumulation of beneficial mutations within a single allele. These results explain why recombinational approaches generally increase the efficiency of laboratory evolution.
Keywords:β-glucuronidase   directed evolution   high-throughput screening   DNA shuffling   clonal interference
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号