首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissecting the energy metabolism in Mycoplasma pneumoniae through genome‐scale metabolic modeling
Authors:Judith A H Wodke  Maria Lluch‐Senar  Josep Marcos  Eva Yus  Miguel Godinho  Ricardo Gutiérrez‐Gallego  Vitor A P Martins dos Santos  Luis Serrano  Edda Klipp  Tobias Maier
Institution:1. EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), , Barcelona, Spain;2. Universitat Pompeu Fabra, , Barcelona, Spain;3. Theoretical Biophysics, Humboldt‐Universit?t zu Berlin, , Berlin, Germany;4. Department of Experimental and Health Sciences, Pompeu Fabra University, , Barcelona, Spain;5. Bio‐analysis Group, Neuroscience Research Program, IMIM‐Parc Salut Mar, , Barcelona, Spain;6. Synthetic and Systems Biology Group, Helmholtz Center for Infection Research (HZI), , Braunschweig, Germany;7. Lifewizz Lda, , Porto, Portugal;8. Systems and Synthetic Biology, Wageningen University, , The Netherlands;9. LifeGlimmer GMBH, , Berlin, Germany;10. Institució Catalana de Recerca i Estudis Avan?ats (ICREA), , Barcelona, Spain
Abstract:Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint‐based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time‐dependent changes, albeit using a static model. By performing an in silico knock‐out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.
Keywords:biomass composition  energy metabolism  in silico knock‐outs  metabolic modeling  Mycoplasma pneumonia
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号