首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel two-layer SVM model in miRNA Drosha processing site detection
Authors:Xingchi Hu  Chuang Ma  Yanhong Zhou
Institution:1.Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology,Huazhong University of Science and Technology,Wuhan,China;2.School of Plant Sciences,University of Arizona,Tucson,USA
Abstract:

Background

MicroRNAs (miRNAs) are a large class of non-coding RNAs with important functions wide spread in animals, plants and viruses. Studies showed that an RNase III family member called Drosha recognizes most miRNAs, initiates their processing and determines the mature miRNAs. The Drosha processing sites identification will shed some light on both miRNA identification and understanding the mechanism of Drosha processing.

Methods

We developed a computational method for Drosha processing site predicting, named as DroshaPSP, which employs a two-layer mathematical model to integrate structure feature in the first layer and sequence features in the second layer. The performance of DroshaPSP was estimated by 5-fold cross-validation and measured by ACC (accuracy), Sn (sensitivity), Sp (specificity), P (precision) and MCC (Matthews correlation coefficient).

Results

The results of testing DroshaPSP on the miRNA data of Drosophila melanogaster indicated that the Sn, Sp, and MCC thereof reach to 0.86, 0.99 and 0.86 respectively.

Conclusions

We found the Shannon entropy, a chemical kinetics feature, is a significant feature in telling the true sites among the nearby sites and improving the performance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号