首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of a protein kinase gene associated with pistillody,homeotic transformation of stamens into pistil-like structures,in alloplasmic wheat
Authors:Tatsunori Saraike  Naoki Shitsukawa  Yuko Yamamoto  Hiroko Hagita  Yukimoto Iwasaki  Shigeo Takumi  Koji Murai
Institution:Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Yoshida-Gun, Fukui, Japan.
Abstract:Homeotic transformation of stamens into pistil-like structures (called pistillody) has been reported in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) having the cytoplasm of a wild relative species, Aegilops crassa. Our previous studies indicated that pistillody is caused by alterations of the class B MADS-box gene expression pattern associated with mitochondrial gene(s) in the Ae. crassa cytoplasm. To elucidate the nuclear gene involved in the cross-talk between pistillody-related mitochondrial gene(s) and nuclear homeotic genes, we performed cDNA subtraction analysis using cDNAs derived from young spikes of a pistillody line and a normal line. As a result, we identified a protein kinase gene, WPPK1 (wheat pistillody-related protein kinase 1), which is upregulated in the young spikes of the pistillody line. RT-PCR analysis indicated that WPPK1 is strongly expressed in pistils and pistil-like stamens in the pistillody line, suggesting that it is involved in the formation of pistil-like stamens as well as pistils. The full-length cDNA sequence for WPPK1 showed high similarity with a flowering plant PVPK-1 protein kinase, and phylogenetic analysis indicated that it is a member of AGC group protein kinases. Furthermore, a phosphorylation assay indicated that it has protein kinase activity. In situ hybridization analysis revealed that WPPK1 is expressed in developing pistils and pistil-like stamens as well as in their primordia. These indicate that in the alloplasmic line, WPPK1 plays a role in formation and development of pistil-like stamens.
Keywords:Aegilops            Alloplasmic line  MADS-box gene  Pistillody  Protein kinase            Triticum
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号