首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model
Authors:Sicard Hélène  Ingoure Sophie  Luciani Béatrice  Serraz Claire  Fournié Jean-Jacques  Bonneville Marc  Tiollier Jérôme  Romagné François
Affiliation:Innate Pharma, Marseilles, France. sicard@innate-pharma.fr
Abstract:
Vgamma9Vdelta2(+) cells represent the major population of gammadelta T cells in primate blood and react in an MHC-unrestricted fashion to a set of low m.w. nonpeptide phosphoantigens. Two types of structurally related agonists have been discovered so far: the natural phosphoantigens (hydroxydimethyl allyl-pyrophosphate or isopentenyl-pyrophosphate (IPP)) acting directly on Vgamma9Vdelta2(+) TCR and aminobisphosphonates, which block the mevalonate pathway in target cells, leading to accumulation of natural phosphoantigens that in turn activate Vgamma9Vdelta2(+) cells. We demonstrate in the cynomolgus monkey that Vgamma9Vdelta2 can be manipulated in vivo with bromohydrin pyrophosphate (BrHPP)/Phosphostim, a potent synthetic agonist for which the mechanism of action is similar to natural phosphoantigens. Although of very short half-life, injection of BrHPP leads to strong activation of Vgamma9Vdelta2, inducing production of a high level of Th1 cytokines. Combination of BrHPP with low-dose rhIL-2 induces specific amplification of effector-memory peripheral Vgamma9Vdelta2 in blood in a dose-dependant manner. This transient response returns to baseline within 10-15 days. Successive infusions of BrHPP and rhIL-2 induce less vigorous expansions, suggesting a progressive exhaustion of the response. As no toxicity is detected with or without IL-2, this scheme represents a promising immunotherapeutic strategy for induction of systemic Th1 cytokines and massive expansion of gammadelta T cell subset with antitumor and anti-infectious properties.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号