首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transient kinetics of the interaction of actin with myosin subfragment-1 in the absence of nucleotide.
Authors:S H Lin  J B Harzelrig  and H C Cheung
Institution:Graduate Program in Biophysical Sciences, University of Alabama at Birmingham 35294-2041.
Abstract:The kinetics of the association of actin with myosin subfragment-1 (S1) has been studied by using S1 labeled at the sulfhydryl group SH1 with 5-(iodoacetamido)fluorescein (S1-AF). Upon rapid mixing in a stopped-flow apparatus, the fluorescence intensity of the fluorescein moiety increased by 50%, followed by a slower increase that was well resolved. This slow phase of the fluorescence change could not be fitted to either a monoexponential or a biexponential function, but it could be fitted to a sum of three exponential terms yielding three observed first-order rate constants (lambda i). The dissociation of acto.-(S1-AF) was studied by displacement of S1-AF from the complex with native S1. The dissociation kinetics was characterized by a single rate constant (approximately 0.012 s-1 at 20 degrees C), and this constant was independent of S1 concentration. Together with previous equilibrium data that were obtained under identified conditions for formation of acto-subfragment-1 (Lin, S.-H., and H. C. Cheung. 1991. Biochemistry. 30:4317-4323), a six-state two-pathway model is proposed as a minimum kinetic scheme for formation of rigor acto.S1. In this model, unbound subfragment-1 exists in two conformational states (S1' and S1) which are in equilibrium with each other, one corresponding to the previously established low-temperature state and the other to the high-temperature state. Each subfragment-1 state can interact with actin to form a collision complex, followed by two isomerizations to form two acto-subfragment-1 states (A.S1' and A.S1). Both isomerizations were visible in stopped-flow experiments. Two special cases of the model were considered: 1) a rapid pre-equilibration of the initial collision complex with actin and S1, and 2) trace accumulation of the collision complex. The first case required that the three combinations of the three observed rate constants be independent of actin concentration. The data were incompatible with this approximation. The other special case required that the sum of the lambda i vary linearly with actin concentration and the other two combinations of lambda i vary with actin concentration in a quadratic fashion. The present data were in agreement with the second case. At 20 degrees C and in 60 mM KCl, 2 mM MgCl2, 30 mM 2-(-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino)ethanesulfonic acid, and pH 7.5, the biomolecular association rate constants for the interaction of actin with S1' and S1 were 8.58 x 10(5) and 1.11 x 10(6) M-1 s-1, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号