首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reassociation rate limited displacement of DNA strands by branch migration.
Authors:C Green and  C Tibbetts
Abstract:Large branched DNA structures are constructed by two-step reassociation of separated complementary strands from restriction fragments of different lengths. The displacement of DNA strands initially annealed to longer complementary DNA sequences, a process mediated by branch migration, is very rapid and has thus far been followed only under conditions which are second order, DNA reassociation rate limiting. The average lifetime of branched DNA leading to displacement of 1.6 Kb strands is estimated to be less than 10 seconds under conditions of DNA reassociation, Tm-25 degrees C. Several DNA-binding drugs, including intercalating dyes, have been tested to determine their influence, if any, on the kinetics of DNA strand displacements by branch migration. Only actinomycin D was found to have significant effect under the conditions we have described. The kinetics of the strand displacement in the presence of low concentrations of actinomycin D remain second order and slower rate of strand displacement must be attributed to decreased rate of reassociation of DNA strands to form the branched intermediates. Consideration is given to the potential manipulation of DNA structures at site-directed branches and the limitations due to rapid strand displacements. The feasibility of constructing sufficiently large branched DNA regions to approach first order, branch migration rate limiting kinetics is also discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号