首页 | 本学科首页   官方微博 | 高级检索  
   检索      


T‐Cell Recruitment and Th1 Polarization in Adipose Tissue During Diet‐Induced Obesity in C57BL/6 Mice
Authors:Katherine J Strissel  Jason DeFuria  Merav E Shaul  Grace Bennett  Andrew S Greenberg  Martin S Obin
Institution:Obesity and Metabolism Laboratory, JM‐USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
Abstract:The role of adaptive immunity in obesity‐associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T‐cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4–22 weeks of a high‐fat diet (HFD (60% energy)). By week 6, eAT mass and stromal vascular cell (SVC) number increased threefold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3+ SVCs or in gene expression of CD3, interferon‐γ (IFN‐γ), or regulated upon activation, normal T‐cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c+ macrophages (MΦ) were enriched sixfold by week 8 (P < 0.01). SVC enrichment for T cells (predominantly CD4+ and CD8+) and elevated IFN‐γ and RANTES gene expression were detected by 20–22 weeks of HFD (P < 0.01), coincident with the resolution of eAT remodeling. HFD‐induced T‐cell priming earlier in the obesity time course is suggested by (i) elevated (fivefold) interleukin‐12 (IL‐12)p40 gene expression in eAT by week 12 (P ≤ 0.01) and (ii) greater IFN‐γ secretion from phorbol myristate acetate (PMA)/ionophore‐stimulated eAT explants at week 6 (onefold, P = 0.08) and week 12 (fivefold, P < 0.001). In conclusion, T‐cell enrichment and IFN‐γ gene induction occur subsequent to AT macrophage (ATMΦ) recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFN‐γ production suggests the contribution of CD4+ and/or CD8+ effectors to cell‐mediated immune responses promoting HFD‐induced AT inflammation and IR.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号