首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris
Authors:Kim Jae-Sung  Sapkota Kumar  Park Se-Eun  Choi Bong-Suk  Kim Seung  Nguyen Thi Hiep  Kim Chun-Sung  Choi Han-Seok  Kim Myung-Kon  Chun Hong-Sung  Park Yeal  Kim Sung-Jun
Institution:Department of Biotechnology, BK 21Research Team for Protein Activity Control, Chosun University, Gwangju 501-759, Republic of Korea.
Abstract:In this study we purified a fibrinolytic enzyme from Cordyceps militaris using a combination of ion-exchange chromatography on a DEAE Sephadex A-50 column, gel filtration chromatography on a Sephadex G-75 column, and FPLC on a HiLoad 16/60 Superdex 75 column. This purification protocol resulted in a 191.8-fold purification of the enzyme and a final yield of 12.9 %. The molecular mass of the purified enzyme was estimated to be 52 kDa by SDS-PAGE, fibrin-zymography, and gel filtration chromatography. The first 19 amino acid residues of the N-terminal sequence were ALTTQSNV THGLATISLRQ, which is similar to the subtilisin-like serine protease PR1J from Metarhizium anisopliae var. anisopliase. This enzyme is a neutral protease with an optimal reaction pH and temperature of 7.4 and 37 degrees , respectively. Results for the fibrinolysis pattern showed that the enzyme rapidly hydrolyzed the fibrin alpha-chain followed by the gamma-gamma chains. It also hydrolyzed the beta-chain, but more slowly. The Aalpha, Bbeta, and gamma chains of fibrinogen were also cleaved very rapidly. We found that enzyme activity was inhibited by Cu2+ and Co2+, but enhanced by the additions of Ca2+ and Mg2+ ions. Furthermore, fibrinolytic enzyme activity was potently inhibited by PMSF and APMSF. This enzyme exhibited a high specificity for the chymotrypsin substrate S-2586 indicating it 's a chymotrypsin-like serine protease. The data we present suggest that the fibrinolytic enzyme derived from the edible and medicinal mushroom Cordyceps militaris has fibrin binding activity, which allows for the local activation of the fibrin degradation pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号