首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutual regulation between mitochondrial ATPase and respiratory chain activities
Authors:S I Tu  H Okazaki  F Ramirez  E Lam  J F Marecek
Institution:Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 USA
Abstract:Compounds made from the reaction of fluorescamine with simple primary amines and with mycosamine-containing macrolide antibiotics (e.g., amphotericin B) are used to investigate possible interactions between ATPase and respiration enzymes in rat liver mitochondria. The following observations have been made. (1) The acyclic form of the benzyl amine-fluorescamine compound stimulates the ATPase-linked inorganic phosphate formation, and this stimulation is not affected by rotenone, antimycin A, and potassium cyanide. In contrast, the respiratory inhibitors are able to prevent the stimulation of ATPase activity that is caused by conventional uncouplers e.g., 2,4-dinitrophenol. (2) The acyclic form of the amphotericin B-fluorescamine compound has no effect on ATPase-linked inorganic phosphate formation rate. However, in the presence of the antibiotic-fluorescamine compounds, the respiratory inhibitors are no longer able to prevent the uncoupler-stimulated ATPase activity. (3) The amine-fluorescamine modifiers have no effect on rotenone-sensitive NADH-cytochrome c reductase, on succinate-cytochrome c reductase, and on cytochrome oxidase in submitochondrial particles. (4) The amine-fluorescamine modifiers decrease the rate of the ATP-driven NAD+ reduction by succinate in submitochondrial particles. (5) The amine-fluorescamine modifiers inhibit the stimulation of respiration that is caused by conventional uncouplers, although the modifiers have no effect on the kinetics of the proton influx induced by uncouplers. The data are consistent with the hypothesis that the ATPase-linked and respiration-linked proton pumps may interact directly with each other, and this step establishes the mutual regulation between ATPase and respiratory activities.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号