首页 | 本学科首页   官方微博 | 高级检索  
     


Proteomic screening of anaerobically regulated promoters from Salmonella and its antitumor applications
Authors:Chen Jianxiang  Wei Dongping  Zhuang Hongqin  Qiao Yiting  Tang Bo  Zhang Xiangyu  Wei Jing  Fang Shentong  Chen Guo  Du Pan  Huang Xiaofeng  Jiang Wenhui  Hu Qingang  Hua Zi-Chun
Affiliation:The State Key Laboratory of Pharmaceutical Biotechnology and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, P R China.
Abstract:Solid tumors often contain hypoxic and necrotic areas that can be targeted by attenuated Salmonella typhimurium VNP20009 (VNP). We sought to develop a hypoxia- inducible promoter system based on the tumor-specific delivered strain VNP to confine expression of therapeutic gene specifically or selectively within the tumor microenvironment. A hypoxia-inducible promoter - adhE promoter was screened from the hypoxia-regulated endogenous proteins of Salmonella through two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight/time-of-flight MS-based proteomics approaches. The efficiency and specificity of the selected adhE promoter were validated first in both bacteria and animal tumor models. The adhE promoter could specifically drive GFP gene expression under hypoxia, but not under normoxia. Furthermore, luciferase reporter expression controlled by the system was also confined to the tumors. Finally, we investigated the anticancer efficacy of VNP delivering human endostatin controlled by our adhE promoter system in both murine melanoma and Lewis lung carcinoma models. Our results demonstrated that by the dual effects of tumoricidal and anti-angiogenic activities, the recombinant Salmonella strain could generate enhanced antitumor effects compared with those of unarmed VNP treatment or untreated control. The recombinant VNP could retard tumor growth significantly and extend survival of tumor-bearing mice by inducing more apoptosis and more severe necrosis as well as inhibiting blood vessel density within tumors. Therefore, VNP carrying the endostatin gene under our tumor-targeted expression system holds promise for the treatment of solid tumors.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号