首页 | 本学科首页   官方微博 | 高级检索  
     


Disruption of cell-substrate adhesion activates the protein tyrosine kinase pp60(c-src)
Authors:Maher P A
Affiliation:Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037, USA. pmaher@scripps.edu
Abstract:Treatment of confluent chicken embryo fibroblasts (CEFs) with trypsin results in a dose- and time-dependent increase in c-Src protein tyrosine kinase (PTK) activity. A similar, but less marked, increase in c-Src PTK activity occurs upon incubation of CEFs in calcium-free phosphate-buffered saline, which also causes a decrease in cell-substrate adhesion. The increase in c-Src PTK activity following disruption of cell-substrate adhesion correlates with a decrease in the phosphorylation of c-Src at the regulatory site, Tyr527. The phosphotyrosine phosphatase inhibitor phenylarsine oxide blocks the increase in c-Src PTK activity seen following treatment with trypsin and the morphological changes associated with the disruption of cell-substrate adhesion. In contrast, disruption of cell-substrate adhesion causes a decrease in FAK PTK activity that rapidly returns to control levels when the cells are plated on fibronection-coated dishes. Treatment of cells with cytochalasin D, which disrupts actin filaments but not cell-substrate adhesion, causes only a slight increase in c-Src PTK activity. Thus, these studies demonstrate a ligand-independent mechanism for the activation of c-Src that is consistent with its role in both cell adhesion and cell motility. Furthermore, these data suggest that similar to adhesion, loss of adhesion is not a passive process but can activate specific signaling pathways that may have significant effects on cellular function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号