Atorvastatin prevents cell damage via modulation of oxidative stress,glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation |
| |
Authors: | Samuel Vandresen-Filho Wagner C. Martins Daniela B. Bertoldo Gianni Mancini Bruno A. Herculano Andreza F. de Bem Carla I. Tasca |
| |
Affiliation: | 1. Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil,;2. Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil |
| |
Abstract: | Oxygen–glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders. |
| |
Keywords: | Atorvastatin Neuroprotection Oxygen&ndash glucose deprivation Oxidative stress Glutamate uptake |
本文献已被 ScienceDirect 等数据库收录! |
|