首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparative Proteomic Analysis Identifies Key Metabolic Regulators of Gemcitabine Resistance in Pancreatic Cancer
Institution:1. Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA;2. Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA;3. Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA;4. Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, USA;5. Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
Abstract:Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current–based MS1 workflow to quantify ~6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and ‘drug response’ mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.
Keywords:comparative proteomics  gemcitabine resistance  drug metabolism  pancreatic cancer  AACT (SERPINA3)"}  {"#name":"keyword"  "$":{"id":"kwrd0035"}  "$$":[{"#name":"text"  "_":"serpin family A member 3  ADLH2"}  {"#name":"keyword"  "$":{"id":"kwrd0045"}  "$$":[{"#name":"text"  "_":"aldehyde dehydrogenase 2 family member  ATP7B"}  {"#name":"keyword"  "$":{"id":"kwrd0055"}  "$$":[{"#name":"text"  "_":"ATPase copper transporting beta  CALB"}  {"#name":"keyword"  "$":{"id":"kwrd0065"}  "$$":[{"#name":"text"  "_":"calbindin 2  CATD (CTSD)"}  {"#name":"keyword"  "$":{"id":"kwrd0075"}  "$$":[{"#name":"text"  "_":"cathepsin D  CDA"}  {"#name":"keyword"  "$":{"id":"kwrd0085"}  "$$":[{"#name":"text"  "_":"cytidine deaminase  CMPK1"}  {"#name":"keyword"  "$":{"id":"kwrd0095"}  "$$":[{"#name":"text"  "_":"cytidine monophosphate kinase 1  CNT1"}  {"#name":"keyword"  "$":{"id":"kwrd0105"}  "$$":[{"#name":"text"  "_":"solute carrier family 28 member 1  CNT3"}  {"#name":"keyword"  "$":{"id":"kwrd0115"}  "$$":[{"#name":"text"  "_":"solute carrier family 28 member 3  CV"}  {"#name":"keyword"  "$":{"id":"kwrd0125"}  "$$":[{"#name":"text"  "_":"coefficient of variation  dFdCDP"}  {"#name":"keyword"  "$":{"id":"kwrd0135"}  "$$":[{"#name":"text"  "_":"gemcitabine diphosphate  dFdCMP"}  {"#name":"keyword"  "$":{"id":"kwrd0145"}  "$$":[{"#name":"text"  "_":"gemcitabine monophosphate  dFdCTP"}  {"#name":"keyword"  "$":{"id":"kwrd0155"}  "$$":[{"#name":"text"  "_":"gemcitabine triphosphate  dFdU"}  {"#name":"keyword"  "$":{"id":"kwrd0165"}  "$$":[{"#name":"text"  "_":"difluorodeoxyuridine  FdUMP"}  {"#name":"keyword"  "$":{"id":"kwrd0175"}  "$$":[{"#name":"text"  "_":"deoxyfluorouridine monophosphate  DCK"}  {"#name":"keyword"  "$":{"id":"kwrd0185"}  "$$":[{"#name":"text"  "_":"deoxycytidine kinase  DCTD"}  {"#name":"keyword"  "$":{"id":"kwrd0195"}  "$$":[{"#name":"text"  "_":"deoxycytidylate deaminase  dNTP"}  {"#name":"keyword"  "$":{"id":"kwrd0205"}  "$$":[{"#name":"text"  "_":"deoxyribonucleotide triphosphate  ECAR"}  {"#name":"keyword"  "$":{"id":"kwrd0215"}  "$$":[{"#name":"text"  "_":"extracellular acidification rate  ENT1"}  {"#name":"keyword"  "$":{"id":"kwrd0225"}  "$$":[{"#name":"text"  "_":"human equilibrative transporter 1  ENT2"}  {"#name":"keyword"  "$":{"id":"kwrd0235"}  "$$":[{"#name":"text"  "_":"solute carrier family 29 member 2  EMT"}  {"#name":"keyword"  "$":{"id":"kwrd0245"}  "$$":[{"#name":"text"  "_":"epithelial–mesenchymal transition  FDR"}  {"#name":"keyword"  "$":{"id":"kwrd0255"}  "$$":[{"#name":"text"  "_":"false discovery rate  FETUA(AHSG)"}  {"#name":"keyword"  "$":{"id":"kwrd0265"}  "$$":[{"#name":"text"  "_":"alpha 2-HS glycoprotein  Gem"}  {"#name":"keyword"  "$":{"id":"kwrd0275"}  "$$":[{"#name":"text"  "_":"gemcitabine  GemR"}  {"#name":"keyword"  "$":{"id":"kwrd0285"}  "$$":[{"#name":"text"  "_":"gemcitabine resistance  GEL2 (GSN)"}  {"#name":"keyword"  "$":{"id":"kwrd0295"}  "$$":[{"#name":"text"  "_":"gelsolin  KCRB (CKB)"}  {"#name":"keyword"  "$":{"id":"kwrd0305"}  "$$":[{"#name":"text"  "_":"creatine kinase B  NT5C"}  {"#name":"keyword"  "$":{"id":"kwrd0315"}  "$$":[{"#name":"text"  "_":"5′-nucleotidase  NDK1"}  {"#name":"keyword"  "$":{"id":"kwrd0005"}  "$$":[{"#name":"text"  "_":"nucleoside diphosphate kinase 1  OCR"}  {"#name":"keyword"  "$":{"id":"kwrd0325"}  "$$":[{"#name":"text"  "_":"oxygen consumption rate  PDAC"}  {"#name":"keyword"  "$":{"id":"kwrd0335"}  "$$":[{"#name":"text"  "_":"pancreatic adenocarcinoma  RO52 (TRIM21)"}  {"#name":"keyword"  "$":{"id":"kwrd0345"}  "$$":[{"#name":"text"  "_":"tripartite motif containing 21  RNR"}  {"#name":"keyword"  "$":{"id":"kwrd0355"}  "$$":[{"#name":"text"  "_":"ribonucleotide reductase  RRM1"}  {"#name":"keyword"  "$":{"id":"kwrd0365"}  "$$":[{"#name":"text"  "_":"ribonucleoside-diphosphate reductase large subunit  RRM2"}  {"#name":"keyword"  "$":{"id":"kwrd0375"}  "$$":[{"#name":"text"  "_":"ribonucleoside-diphosphate reductase subunit M2  RRM2B"}  {"#name":"keyword"  "$":{"id":"kwrd0385"}  "$$":[{"#name":"text"  "_":"ribonucleotide-diphosphate reductase subunit M2 B  S100A4"}  {"#name":"keyword"  "$":{"id":"kwrd0395"}  "$$":[{"#name":"text"  "_":"S100 calcium binding protein A4  STIM1"}  {"#name":"keyword"  "$":{"id":"kwrd0405"}  "$$":[{"#name":"text"  "_":"stromal interaction molecule 1  TYMS"}  {"#name":"keyword"  "$":{"id":"kwrd0020u"}  "$$":[{"#name":"text"  "_":"thymidylate synthetase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号