首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Callus induction and plantlet regeneration in Bixa oreliana L., an annatto-yielding tree
Authors:P S Sha Valli Khan  E Prakash  K R Rao
Institution:(1) Plant Tissue Culture, Laboratory, Tata Energy Research Institute, Darbari Seth Block, IHC, 110 003 New Delhi, India;(2) Plant Tissue Culture Laboratory, Department of Botany, Sri Venkateswara University, 517502 Tirupati, A.P., India
Abstract:Summary A protocol has been developed for plantlet regeneration from seed callus of Bixa orellana L. Seeds demonstrated a high percentage of callus induction (63±7.3%) and a high yield (356±14.7 mg per seed) of white friable callus on Murashige and Skoog (MS) medium containing 5.0 μM l-naphthaleneacetic acid (NAA) and 2.5μM N 6-benzyladenine (BA) within 6 wk of culture in the dark. Callus induction frequency was greater under 24h dark as compared to 16h light/8h dark photoperiod or 24h light photoperiod. Increased myo-inositol (MI: 200mgl−1) and addition of ascorbic acid (AA: 200 mgl−1) to the culture medium positively improved callus induction frequency and growth. Shoot differentiation from white friable seed callus was best using 10.0 μM BA and 5.0 μM NAA, where the highest percentage of calluses forming shools (74.9±4.8%), the highest number of shoots per callus (six or seven) and the highest shoot-forming index (5.0) were obtained within 6 wk. Shoots elongated to 4 cm within 4 wk of transfer onto MS medium devoid of growth regulators. Shoots were rooted using half-strength MS medium containing 5.0 μM indole-3-butyric acid (IBA). About 85% of these plants were established in pots containing pure garden soil and organic manure after 3 wk of hardening. Regenerated plants were morphologically uniform with normal leaf, shape and growth patterns. These plants are currently being screened for the presence of agronomically useful genetic variants.
Keywords:annatto            Bixa orellana            Bixaceae  plantlet  regeneration  seed callus
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号