首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Triple helix formation and disulphide bonding during the biosynthesis of glomerular basement membrane collagen.
Authors:I F Williams  R Harwood  M E Grant
Institution:Kenan Laboratories of Chemistry University of North Carolina Chapel Hill, North Carolina 27514 USA
Abstract:White erythrocyte membranes, or ghosts, were monoconcave discocytes when incubated in 50mM N-tris (hydroxymethyl) methyl-2-aminoethane sulfonic acid titrated to pH 7.4 with triethanolamine. If 3mM MgCl2 was included in the incubation medium, the ghosts were predominantly echinocytes. The echinocytic form could also be induced by Co++, Ni++, Li+, Na+, K+, NH4+ and tetramethylammonium ion, all as chloride salts. The concentration of cation necessary for 50% of the ghosts to be echinocytes was correlated with the hydrated charge density of the cation with the most highly charged cations being the most effective. The cations Ca++, Sr++, Ba++ and La+++, (also as chloride salts) did not induce the normal echinocytic form, but at high levels induced a few misshapen forms with some resemblance to echinocytes. Instead Ca++, Sr++, Ba++ and La+++ suppressed the formation of echinocytes in the presence of Mg++ and other ions. This suggests the presence of a specific Ca++ binding site important to shape control in the erythrocyte membrane.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号