SNIP, a novel SNAP-25-interacting protein implicated in regulated exocytosis |
| |
Authors: | Chin L S Nugent R D Raynor M C Vavalle J P Li L |
| |
Affiliation: | Departments of Pharmacology and Physiology, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA. |
| |
Abstract: | ![]() Synaptosome-associated protein of 25 kDa (SNAP-25) is a presynaptic membrane protein that has been clearly implicated in membrane fusion in both developing and mature neurons, although its mechanisms of action are unclear. We have now identified a novel SNAP-25-interacting protein named SNIP. SNIP is a hydrophilic, 145-kDa protein that comprises two predicted coiled-coil domains, two highly charged regions, and two proline-rich domains with multiple PPXY and PXXP motifs. SNIP is selectively expressed in brain where it co-distributes with SNAP-25 in most brain regions. Biochemical studies have revealed that SNIP is tightly associated with the brain cytoskeleton. Subcellular fractionation and immunofluorescence localization studies have demonstrated that SNIP co-localizes with SNAP-25 as well as the cortical actin cytoskeleton, suggesting that SNIP serves as a linker protein connecting SNAP-25 to the submembranous cytoskeleton. By using deletion analysis, we have mapped the binding domains of SNIP and SNAP-25, and we have demonstrated that the SNIP-SNAP-25 association is mediated via coiled-coil interactions. Moreover, we have shown that overexpression of SNIP or its SNAP-25-interacting domain inhibits Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that SNIP is involved in regulation of neurosecretion, perhaps via its interaction with SNAP-25 and the cytoskeleton. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|