Efficient and rapid uptake of magnetic carbon nanotubes into human monocytic cells: implications for cell-based cancer gene therapy |
| |
Authors: | Hilal Gul-Uludag Weibing Lu Peng Xu James Xing Jie Chen |
| |
Affiliation: | Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada. |
| |
Abstract: | Monocyte-based gene therapies in cancer have been hampered by either the resistance of these cells to non-viral molecular delivery methods or their poor trafficking to the tumor site after their ex vivo manipulations. Magnetic nanoparticles (MNP)-loaded genetically engineered monocytes can efficiently delivered to tumor site by external magnetic field, but they are not ideal delivery tools due to their spherical shape. Hence, we have investigated the cellular uptake efficiency and cytotoxicity of fluorescein isothiocyanate (FITC)-labelled magnetic carbon nanotubes (FITC-mCNT) in human monocytic leukemia cell line THP-1 for application in cell-based gene therapy against cancer. Uptake of FITC-mCNT into THP-1 cells reached 100% only 1 h after the delivery. Confocal imaging confirmed that FITC-mCNT entered the cell cytoplasm and even into the nucleus. FITC-mCNT uptake did not compromise cell viability. This delivery system might therefore enhance cell-based cancer gene therapies. |
| |
Keywords: | |
本文献已被 PubMed SpringerLink 等数据库收录! |