首页 | 本学科首页   官方微博 | 高级检索  
     


RhoA Ambivalently Controls Prominent Myofibroblast Characteritics by Involving Distinct Signaling Routes
Authors:Aline Jatho  Svenja Hartmann  Naim Kittana  Felicitas Mügge  Christina M. Wuertz  Malte Tiburcy  Wolfram-Hubertus Zimmermann  D?rthe M. Katschinski  Susanne Lutz
Affiliation:1. Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University, Germany.; 2. Department of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Germany.; 3. DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany.; 4. Division of Cell and Molecular Biophysics, King´s College London, London, United Kingdom.; University of Bergen, NORWAY,
Abstract:IntroductionRhoA has been shown to be beneficial in cardiac disease models when overexpressed in cardiomyocytes, whereas its role in cardiac fibroblasts (CF) is still poorly understood. During cardiac remodeling CF undergo a transition towards a myofibroblast phenotype thereby showing an increased proliferation and migration rate. Both processes involve the remodeling of the cytoskeleton. Since RhoA is known to be a major regulator of the cytoskeleton, we analyzed its role in CF and its effect on myofibroblast characteristics in 2 D and 3D models.ResultsDownregulation of RhoA was shown to strongly affect the actin cytoskeleton. It decreased the myofibroblast marker α-sm-actin, but increased certain fibrosis-associated factors like TGF-β and collagens. Also, the detailed analysis of CTGF expression demonstrated that the outcome of RhoA signaling strongly depends on the involved stimulus. Furthermore, we show that proliferation of myofibroblasts rely on RhoA and tubulin acetylation. In assays accessing three different types of migration, we demonstrate that RhoA/ROCK/Dia1 are important for 2D migration and the repression of RhoA and Dia1 signaling accelerates 3D migration. Finally, we show that a downregulation of RhoA in CF impacts the viscoelastic and contractile properties of engineered tissues.ConclusionRhoA positively and negatively influences myofibroblast characteristics by differential signaling cascades and depending on environmental conditions. These include gene expression, migration and proliferation. Reduction of RhoA leads to an increased viscoelasticity and a decrease in contractile force in engineered cardiac tissue.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号