Localization and force analysis at the single virus particle level using atomic force microscopy |
| |
Authors: | Liu Chih-Hao Horng Jim-Tong Chang Jeng-Shian Hsieh Chung-Fan Tseng You-Chen Lin Shiming |
| |
Affiliation: | Institute of Applied Mechanics, Nation Taiwan University, Taipei, Taiwan. |
| |
Abstract: | Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|