首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photosynthetic CO2-use efficiency in lichens and their isolated photobionts: the possible role of a CO2-concentrating mechanism
Authors:Kristin Palmqvist
Institution:(1) Department of Plant Physiology, University of Umeå, S-901 87 Umeå, Sweden
Abstract:The CO2 dependence of net CO2 assimilation was examined in a number of green algal and cyanobacterial lichens with the aim of screening for the algal/cyanobacterial CO2-concentrating mechanism (CCM) in these symbiotic organisms. For the lichens Peltigera aphthosa (L.) Willd., P. canina (L.) Willd. and P. neopolydactyla (Gyeln.) Gyeln., the photosynthetic performance was also compared between intact thalli and their respective photobionts, the green alga Coccomyxa PA, isolated from Peltigera aphthosa and the cyanobacterium Nostoc PC, isolated from Peltigera canina. More direct evidence for the operation of a CCM was obtained by monitoring the effects of the carbonic-anhydrase inhibitors acetazolamide and ethoxyzolamide on the photosynthetic CO2use efficiency of the photobionts. The results strongly indicate the operation of a CCM in all cyanobacterial lichens investigated and in cultured cells of Nostoc PC, similar to that described for free-living species of cyanobacteria. The green algal lichens were divided into two groups, one with a low and the other with a higher CO2-use efficiency, indicative of the absence of a CCM in the former. The absence of a CCM in the low-affinity lichens was related to the photobiont, because free-living cells of Coccomyxa PA also apparently lacked a CCM. As a result of the postulated CCM, cyanobacterial Peltigera lichens have higher rates of net photosynthesis at normal CO2 compared with Peltigera aphthosa. It is proposed that this increased photosynthetic capacity may result in a higher production potential, provided that photosynthesis is limited by CO2 under natural conditions.
Keywords:Alga(green)  Carbon dioxide concentrating mechanism  Carbonic anhydrase  Cyanobacterium  Lichen  Photosynthesis (lichen)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号