首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular-size corrections to the strength of the hydrophobic effect: a critical review
Authors:Jose M Sanchez-Ruiz
Institution:(1) Departamento de Quimica Fisicae Instituto de Bictecnologia, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
Abstract:Large increases in the strength of the hydrophobic effect and, consequently, in the estimates of the hydrophobic contribution to the thermodynamics of protein folding (and other biologically-relevant processes), have been recently advocated on the basis of the application, to model transfer thermodynamic data, of corrections for the solute/solvent size disparity. In this work we first examine the effect of molecular-size corrections on the values calculated from several types of model transfer data. For the transfer of a solute from an organic solvent to water, the above increase is exclusively associated with the application of a solute/water molecular-size correction. Secondly, we critically review and assess the several theoretical arguments that lead to these corrections. In particular, we show that, contrary to previous claims in the literature, the analysis of dissolution processes in terms of ideal-gas, intermediate states does not lead to the molecular-size correction term, but only to expressions equivalent (although not strictly identical) to those derived from the well-known Ben-Naim's statistical-mechanical approach. In general, the several analyses offered or discussed in this work disfavor the application of the solute/water molecular-size corrections.
Keywords:Hydrophobic effect  Molecular-size corrections
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号