首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Supramolecular DNA-streptavidin nanocircles with a covalently attached oligonucleotide moiety
Authors:Niemeyer Christof M  Adler Michael  Gao Song  Chi Lifeng
Institution:Universit?t Dortmund, Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Str. 6, D-44227 Dortmund. cmn@chemie.uni-dortmund.de
Abstract:Covalent hybrid conjugates consisting of streptavidin (STV) and a 24-mer single-stranded DNA oligonucleotide have been used as a starting material for the synthesis of supramolecular nanocircles. For this, the covalent hybrid conjugates were oligomerized by cross-linking with 5 ,5 -bis-biotinylated double-stranded DNA (dsDNA) fragments of various length. Heat denaturation of the resulting oligomeric conjugates and subsequent rapid cooling led to the formation of the nanocircles, in which the oligonucleotide-containing STV molecule is coupled with both ends of the circular bis-biotinylated dsDNA fragment. The circular structure of the bioconjugates was established by electrophoretic studies including Ferguson plot analysis as well as by scanning force microscopy (SFM) inspection. The formation process and the stability against degradation by ligand exchange with free D-biotin was compared for the nanocircles obtained from covalent oligonucleotide-STV hybrids and native STV. The former nanocircles revealed a decreased stability with respect to ring opening than the circles obtained from native STV. This suggested that the affinity of the covalent oligonucleotide-STV hybrid for binding biotinylated DNA is significantly decreased. Nevertheless, the single-stranded oligonucleotide moiety of the hybrid nanocircles can be used as a molecular handle for further functionalization. For instance, it was used for the selective DNA-directed immobilization at a surface, previously functionalized with complementary capture oligonucleotides. Moreover, we demonstrate that a pair of nanocircles, containing complementary oligonucleotide moieties, can be hybridized to form specific dimers, thereby generating a novel type of supramolecular DNA-protein nanostructures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号