首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Incomplete fatty acid oxidation. The production and epimerization of 3-hydroxy fatty acids.
Authors:S J Jin  C L Hoppel  K Y Tserng
Institution:Medical Research Service, Veterans Affairs Medical Center, Cleveland, Ohio, 44106.
Abstract:3-Hydroxydicarboxylic acids are major urinary metabolites derived from fatty acid metabolism. These compounds are produced from the omega-oxidation of 3-hydroxy fatty acids. The production of the precursor 3-hydroxy fatty acids from incomplete beta-oxidation of fatty acids in rat liver mitochondria was investigated. Independent of the chain length or the concentration of fatty acid substrates, the accumulation of 3-hydroxyacyl intermediates was relatively constant at the concentration of 3-5 nmol/mg of mitochondrial protein. The extent of the incomplete oxidation was the same in Percoll gradient-purified mitochondria. Rotenone treatment increased the production of 3-hydroxy fatty acids. 3-Hydroxy fatty acids did not exist as pure L-enantiomer as expected from beta-oxidation. Instead, these metabolites were epimerized to a near racemic mixture of D- and L-isomers with a slightly dominant D-isomer (58 +/- 3%). By using deuterium-isotope labeling, the mechanism of epimerizartion was shown to be a rapid dehydration-rehydration through trans-2-enoyl-CoA. In addition, cis-3 and trans-3 fatty acids were produced; these metabolites were derived from the isomerization of trans-2-enoyl-CoA. Epimerase and isomerase were thought to be enzymes involved in the oxidation of unsaturated fatty acids. Current data have shown that the metabolism of these acids is actually through NADPH-dependent reduction pathways. The activities of epimerase and isomerase detected in rat liver mitochondria possibly function mainly in the metabolism of saturated fatty acids in a reverse role to the conventional concept.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号