首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Experimentally reduced hip abductor function during walking: Implications for knee joint loads
Authors:Marius Henriksen  Jens Aaboe  Erik B Simonsen  Tine Alkjær  Henning Bliddal
Institution:1. Department of Rehabilitation Sciences, University of Kentucky, Lexington, KY, USA;2. Department of Orthopedic Surgery, University of Kentucky, Lexington, KY, USA;1. Department of Rehabilitation Sciences, University of Toledo, 2801 W. Bancroft Street, MS #119, Toledo, OH 43606-3390, USA;2. Department of Orthopaedic Surgery, University of Toledo Orthopaedic Center, Health Science Campus, 125 Hospital Drive, MS 1094, Toledo OH 43614, USA;3. Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, 209 Fetzer Hall, CB#8700, Chapel Hill, NC 27599-8700, USA;1. Department of Kinesiology, University of Maryland, College Park, MD, USA;2. Neuroscience & Cognitive Science Program, University of Maryland, College Park, MD, USA;3. Fischell Bioengineering Graduate Program, University of Maryland, College Park, MD, USA;4. Department of Mechanical Engineering, Kyung Hee University, South Korea
Abstract:Hip and knee functions are intimately connected and reduced hip abductor function might play a role in development of knee osteoarthritis (OA) by increasing the external knee adduction moment during walking. The purpose of this study was to test the hypothesis that reduced function of the gluteus medius (GM) muscle would lead to increased external knee adduction moment during level walking in healthy subjects. Reduced GM muscle function was induced experimentally, by means of intramuscular injections of hypertonic saline that produced an intense short-term muscle pain and reduced muscle function. Isotonic saline injections were used as non-painful control. Fifteen healthy subjects performed walking trials at their self-selected walking speed before and immediately after injections, and again after 20 min of rest, to ensure pain recovery. Standard gait analyses were used to calculate three-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM muscle was significantly reduced by pain (?39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (?6.4% and ?4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles were reduced by ?1°. Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased loads at the knee joint during level walking.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号