首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of vitamin D status on cutaneous sterologenesis in vivo and in vitro
Authors:K R Feingold  M L Williams  S Pillai  G K Menon  B P Halloran  D D Bikle  P M Elias
Abstract:Recent studies have shown that cutaneous sterologenesis is autonomous from the influence of circulating sterols, and that the epidermis is an important site of sterologenesis which is regulated by permeability barrier requirements. In addition to barrier function, an additional, important function of the epidermis is to synthesize sterol precursors of vitamin D3. The present study was designed, first, to determine whether vitamin D status and/or circulating levels of 1,25-dihydroxyvitamin D3 might play a role in regulating cutaneous sterol synthesis in vivo and, second, whether 1,25-dihydroxyvitamin D3 modulates sterologenesis in cultured human keratinocytes. Hairless mice were maintained on a vitamin D-deficient diet in the dark and supplemented with various doses of vitamin D3/day. Despite demonstrating serum 25-hydroxyvitamin D3 levels ranging from less than 10 to 343 ng/ml, the incorporation of tritiated water into cholesterol and total nonsaponifiable lipids in both the epidermis and dermis was similar in the four groups of animals. Likewise, administration of various doses of 1,25-dihydroxyvitamin D3 to vitamin D-deficient mice resulted in serum levels of 1,25-dihydroxyvitamin D3 ranging from less than 10 to 85 pg/ml; yet, cholesterol and total nonsaponifiable lipid synthesis was similar in both the dermis and epidermis in all groups of animals. Moreover, administration of 0.6 micrograms/kg per day of 1,25-dihydroxyvitamin D3 to 'normal' vitamin D-replete mice also had no effect on cutaneous sterol synthesis. Furthermore, conversion of 7-dehydrocholesterol to cholesterol in vitamin D-deficient vs. supplemented animals did not differ. Finally, addition of 1,25-dihydroxyvitamin D3 to cultured keratinocytes over a concentration range of 10(-12)-10(-7) M did not affect sterologenesis, except at supraphysiologic doses (10(-7) M). Together, these results suggest that vitamin D status does not influence sterol synthesis in the skin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号