首页 | 本学科首页   官方微博 | 高级检索  
     


Odorant-induced currents in intact patches from rat olfactory receptor neurons: theory and experiment.
Authors:P Chiu   J W Lynch     P H Barry
Affiliation:School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia.
Abstract:Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of approximately 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV. Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of approximately 115 pS and depolarization of approximately 32 mV. All these results are consistent with cAMP-gated cation channels dominating the odorant response. This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号