Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea) |
| |
Authors: | ENRIQUE GARCÍ A-BARROS |
| |
Affiliation: | Departamento de Biología (Zoología), Universidad Autonoma, 28049 Madrid, Spain |
| |
Abstract: | The interspecific relationships between egg size and body size in butterflies (Papilionoidea and Hesperiidae), and between size and egg and larval development time, larval trophic specificity, foodplant structure, climate, and phenology were investigated based on a sample of more than 1180 species. The independent contrasts mediod was used to avoid taxonomy-dependent results. Egg size is allometrically related to adult wing length by a slope of 0.43. Based on a subset of species, fecundity is correlated to adult body size, and there is evidence for a compromise between egg number and egg size (relative to adult size) across species. Butterfly size increases in correlation to the mean annual temperature of me species geographic range, but decreases in relation to increased aridity (or die length of the dry season). Larger butterflies tend to have longer larval development times, use large or structurally complex host plants, and are more likely to lay their eggs in batches, irrespective of climate. Larger eggs tend to develop more slowly, and give rise to larvae with longer developmental periods that will result in larger adults. No evidence was found to support a relationship between butterfly body size and polyphagy. A complex pattern of interrelationships links body size (and egg size) to other traits, although correlations other than mat between egg size and body size are generally low. The results suggest the necessity of separating climate and seasonality into components that are relevant to insect life histories in comparative studies. |
| |
Keywords: | allometry climate clutch size comparative methods fecundity host plant phenology polyphagy |
|
|