首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transpiration and drought resistance of Douglas-fir seedlings exposed to excess ammonium
Authors:Pieter H B De Visser  Willem G Keltjens  Günther R Findenegg
Institution:(1) Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, P.O. Box 8005, 6700 EC Wageningen, The Netherlands, NL
Abstract: In a pot trial growth and transpiration of 3-year-old Douglas-fir seedlings on an acid, sandy soil was examined at a deficient (30 kg N ha –  1 year –  1) and an excessive level (120 kg N ha –  1 year –  1) of NH4 application. Dissolved ammonium sulphate was applied to the pots weekly for two growing seasons. In half of the pots a complete set of other nutrients was applied in optimal proportions to the applied nitrogen. Water supply was optimal and transpiration was recorded. At the end of the second treatment season irrigation was stopped for 2 weeks during dry and sunny weather. Both high application of NH4 and additional nutrients increased shoot growth and transpiration demand in the first treatment year. The root system was smaller at higher N level and this reduced water uptake accordingly. In the second year the combination of high NH4 + and additional nutrients affected root functioning predominantly due to salinity effects and this seriously decreased water uptake capacity and shoot water potentials, finally resulting in tree death. Without addition of other nutrients the high NH4 + application resulted in a high degree of soil acidification, which damaged the roots, that showed a decrease in water uptake capacity. At the low NH4 supply level soil acidification was lower, and root functioning was not affected, and the trees recovered quickly from the imposed drought. Higher needle K and P status depressed transpiration rates at the low NH4 application rate. Received: 9 January 1995 / Accepted: 18 September 1995
Keywords:  K  P  Pseudotsuga menziesii  Root/shoot ratio  Soil acidification
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号