首页 | 本学科首页   官方微博 | 高级检索  
     


Sensitivity analysis for informative censoring in parametric survival models
Authors:Siannis Fotios  Copas John  Lu Guobing
Affiliation:MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge CB2 2SR, UK. fotios.siannis@mrc-bsu.cam.ac.uk
Abstract:Most statistical methods for censored survival data assume there is no dependence between the lifetime and censoring mechanisms, an assumption which is often doubtful in practice. In this paper we study a parametric model which allows for dependence in terms of a parameter delta and a bias function B(t, theta). We propose a sensitivity analysis on the estimate of the parameter of interest for small values of delta. This parameter measures the dependence between the lifetime and the censoring mechanisms. Its size can be interpreted in terms of a correlation coefficient between the two mechanisms. A medical example suggests that even a small degree of dependence between the failure and censoring processes can have a noticeable effect on the analysis.
Keywords:Sensitivity analysis   informative censoring   proportional hazard models
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号