Abstract: | ![]() The identity of the transporter responsible for fructose absorption in the intestine in vivo and its potential role in fructose-induced hypertension remain speculative. Here we demonstrate that Glut5 (Slc2a5) deletion reduced fructose absorption by ∼75% in the jejunum and decreased the concentration of serum fructose by ∼90% relative to wild-type mice on increased dietary fructose. When fed a control (60% starch) diet, Glut5-/- mice had normal blood pressure and displayed normal weight gain. However, whereas Glut5+/+ mice showed enhanced salt absorption in their jejuna in response to luminal fructose and developed systemic hypertension when fed a high fructose (60% fructose) diet for 14 weeks, Glut5-/- mice did not display fructose-stimulated salt absorption in their jejuna, and they experienced a significant impairment of nutrient absorption in their intestine with accompanying hypotension as early as 3–5 days after the start of a high fructose diet. Examination of the intestinal tract of Glut5-/- mice fed a high fructose diet revealed massive dilatation of the caecum and colon, consistent with severe malabsorption, along with a unique adaptive up-regulation of ion transporters. In contrast to the malabsorption of fructose, Glut5-/- mice did not exhibit an absorption defect when fed a high glucose (60% glucose) diet. We conclude that Glut5 is essential for the absorption of fructose in the intestine and plays a fundamental role in the generation of fructose-induced hypertension. Deletion of Glut5 results in a serious nutrient-absorptive defect and volume depletion only when the animals are fed a high fructose diet and is associated with compensatory adaptive up-regulation of ion-absorbing transporters in the colon.Fructose is a monosaccharide and is one of the three most important blood sugars along with glucose and galactose (1–3). It plays an essential role in vital metabolic functions in the body, including glycolysis and gluconeogenesis (4–6). Fructose is predominantly metabolized in the liver. A high flux of fructose to the liver perturbs glucose metabolism and leads to a significantly enhanced rate of triglyceride synthesis. In addition, fructose can be metabolized in the liver to uric acid, a potent antioxidant (7, 8).The classic model of sugar absorption indicates that sodium glucose cotransporter 1 (Sglt1)3 and Glut5 absorb glucose and fructose, respectively, from intestinal lumen to cytosol, and Glut2 transports both glucose and fructose from the cytosol to the blood (9–19). Glut2 has high affinity for glucose and a moderate affinity for fructose, whereas Glut5 predominantly transports fructose with very low affinity for glucose (9–19; reviews in Refs. 14, 17–19). The expression of Glut5 or Glut2 in the small intestine increases in rats or mice fed a diet high in fructose or perfused with increased fructose concentration (11–14, 18, 19).Glut2 is predominantly found on the basolateral membrane and in the cytoplasm of enterocytes at basal state but is thought to be recruited to the apical membrane in the presence of increased glucose or fructose in the intestinal lumen (11, 19). Given the fact that both Glut5 and Glut2 can transport fructose in vitro and given the ability of Glut2 to traffic to the apical membrane, the contribution of Glut5 to the absorption of fructose in vivo and systemic fructose homeostasis remains speculative.The marked increase in dietary fructose consumption in the form of high fructose corn syrup, a common sweetener used in the food industry, table sugar, and fruits correlates with the increased incidence of metabolic syndrome, which is reaching an epidemic proportion in developed countries and is a major contributor to premature morbidity and mortality in our society (20–22). Increased dietary fructose intake recapitulates many aspects of metabolic syndrome, including dyslipidemia, insulin resistance, and hypertension in rat and mouse (23–26). Recent studies demonstrate that fructose-induced hypertension is initiated by increased absorption of salt and fructose in the intestine (27); however, the one or more molecules (Glut2, Glut5, Glut7, or Sglt1) that are responsible for the absorption of fructose in the intestine remain speculative. Further, although Glut7, Glut5, and Glut2 can transport fructose in vitro, the role of Glut5 in in vivo fructose absorption remains unknown. To ascertain the role of Glut5 in fructose absorption in the intestine in vivo and fructose-induced hypertension, mice lacking the Glut5 gene (Glut5-/-) were placed on either high fructose or normal diet and compared with their wild-type littermates (Glut5+/+). |