首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation.
Authors:A Yu  J Dill  S S Wirth  G Huang  V H Lee  I S Haworth  and M Mitas
Abstract:The structure of a single-stranded (ss) oligonucleotide containing (GTC)15 ss(GTC)15] was examined. As a control, parallel studies were performed with ss(CTG)15, an oligonucleotide that forms a hairpin. Electrophoretic mobility, KMnO4 oxidation and P1 nuclease studies demonstrate that, similar to ss(CTG)15, ss(GTC)15 forms a hairpin containing base paired and/or stacked thymines in the stem. Electrophoretic mobility melting profiles performed in approximately 1 mM Na+ revealed that the melting temperature of ss(GTC)15 and ss(CTG)15 were 38 and 48 degrees C respectively. The loop regions of ss(GTC)15 and ss(CTG)15 were cleaved by single-strand-specific P1 nuclease at the T25-C29 and G26-C27 phosphodiester bonds respectively (where the loop apex of the DNAs is T28). Molecular dynamics simulations suggested that in ss(GTC)15 the loop was bent towards the major groove of the stem, apparently causing an increased exposure of the T25-C29 region to solvent. In ss(CTG)15 guanine--guanine stacking caused a separation of the G26 and C27 bases, resulting in exposure of the intervening phosphodiester to solvent. The results suggest that ss(GTC)15 and ss(CTG)15 form similar, but distinguishable, hairpin structures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号