首页 | 本学科首页   官方微博 | 高级检索  
     


Tumor necrosis factor inhibits K+ current expression in cultured oligodendrocytes
Authors:Betty Soliven  Sara Szuchet  Deborah J. Nelson
Affiliation:(1) Department of Neurology, University of Chicago, 60637 Chicago, Illinois;(2) Department of Medicine, University of Chicago, 60637 Chicago, Illinois;(3) Department of Brain Research Institute, University of Chicago, 60637 Chicago, Illinois
Abstract:
Summary The effects of tumor necrosis factor-agr (TNF-agr), a cytokine secreted by activated macrophages, on the electrical membrane properties of cultured adult ovine oligodendrocytes (OLGs) were investigated using the whole-cell voltage-clamp technique. Treatment with recombinant human TNF-agr (rhTNF) for 24 to 72 hr produces (i) process retraction in some but not all OLGs, (ii) a reduction in the resting membrane potential with no significant change in membrane capacitance or input resistance over control cells and (iii) a decrease in the expression of both the inwardly rectifying and outward K+ current. The magnitude of the membrane potential change as well as K+ current inhibition was larger in cells with retracted processes. The electrophysiological effects of rhTNF were attenuated when rhTNF was neutralized with a polyclonal anti-rhTNF antibody. The binding of rhTNF to its receptor has been reported to increase GTP binding, to increase GTPase activity of a pertussis-sensitive G protein, and to produce an elevation in intracellular cAMP in other cell types. However, pretreatment of OLGs with activated pertussis toxin failed to attenuate or mimic the effects of rhTNF. Chronic exposure of OLGs to the membrane permeant analogue of cAMP, 8-bromo-cAMP, resulted primarily in an inhibition of the inwardly rectifying K+ current, an effect which was less than that produced by rhTNF alone and without any of the associated rhTNF-induced morphological changes. This indicates that the effects of rhTNF cannot be entirely accounted for by an elevation in intracellular cAMP. Cycloheximide (CHX), an inhibitor of protein synthesis, mimicked the effects of rhTNF; however, the effects of rhTNF and CHX were not additive. The finding that both ionic current expression and membrane potential were reduced in cells treated with rhTNF that appeared morphologically normal suggests that abnormal ion channel expression in OLGs precedes and may contribute to eventual myelin swelling and damage.
Keywords:cytokines  glial cells  ion channels  myelin  demyelination
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号