首页 | 本学科首页   官方微博 | 高级检索  
     


A systematic comparison of three structure determination methods from NMR data: Dependence upon quality and quantity of data
Authors:Yajun Liu  Daqing Zhao  Russ Altman  Oleg Jardetzky
Affiliation:(1) Stanford Magnetic Resonance Laboratory, Stanford University, 94305-5055 Stanford, CA, USA
Abstract:Summary We have systematically examined how the quality of NMR protein structures depends on (1) the number of NOE distance constraints. (2) their assumed precision, (3) the method of structure calculation and (4) the size of the protein. The test sets of distance constraints have been derived from the crystal structures of crambin (5 kDa) and staphylococcal nuclease (17 kDa). Three methods of structure calculation have been compared: Distance Geometry (DGEOM), Restrained Molecular Dynamics (XPLOR) and the Double Iterated Kalman Filter (DIKF). All three methods can reproduce the general features of the starting structure under all conditions tested. In many instances the apparent precision of the calculated structure (as measured by the RMS dispersion from the average) is greater than its accuracy (as measured by the RMS deviation of the average structure from the starting crystal structure). The global RMS deviations from the reference structures decrease exponentially as the number of constraints is increased, and after using about 30% of all potential constraints, the crrors asymptotically approach a limiting value. Increasing the assumed precision of the constraints has the same qualitative effect as increasing the number of constraints. For comparable numbers of constraints/residue, the precision of the calculated structure is less for the larger than for the smaller protein, regardless of the method of calculation. The accuracy of the average structure calculated by Restrained Molecular Dynamics is greater than that of structures obtained by purely geometric methods (DGEOM and DIKF).
Keywords:Distance geometry  Optimized filtering  Kalman filter  Simulated annealing  NMR protein structures
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号