Association of Hemolytic Activity of Pseudomonas entomophila,a Versatile Soil Bacterium,with Cyclic Lipopeptide Production |
| |
Authors: | Isabelle Vallet-Gely Alexey Novikov Luis Augusto Peter Liehl Gérard Bolbach Maria Péchy-Tarr Pierre Cosson Christoph Keel Martine Caroff Bruno Lemaitre |
| |
Abstract: | Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C10OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.Pseudomonas entomophila is a recently isolated Pseudomonas species that is closely related to the saprophytic soil bacterium Pseudomonas putida. It was initially characterized as a natural pathogen of Drosophila (63). Indeed, P. entomophila was first isolated from flies sampled in Guadeloupe, and it is highly pathogenic for Drosophila larvae and adults. P. entomophila can also effectively kill members of other insect orders (e.g., Bombyx mori, Anopheles gambiae), which makes it a new entomopathogenic bacterium. Its ability to infect and kill Drosophila melanogaster very efficiently after ingestion makes it an appropriate model for the study of host-pathogen interactions (38, 62, 63).In order to unravel features contributing to the entomopathogenic properties of P. entomophila, its genome was sequenced. The results suggest that this strain is a ubiquitous, metabolically versatile bacterium that may colonize diverse habitats, including soil, rhizosphere, and aquatic systems, as shown for P. putida KT2440 (62). However, in contrast to the P. putida genome, the P. entomophila genome contains many genes that are predicted to be important for virulence toward insects. Notably, P. entomophila could secrete many degradative enzymes (proteases and lipases), putative toxins, and secondary metabolites (62). Similar factors have been shown to play a key role in the virulence of other entomopathogenic bacteria like Photorhabdus and Xenorhabdus sp. (27, 29).Insertional mutagenesis allowed the identification of several P. entomophila genes required to infect and/or kill Drosophila. This analysis demonstrated that P. entomophila virulence is under the control of the GacS/GacA two-component system (62, 63), a global regulatory system which is known to control secondary metabolite production, protein secretion, and pathogenic abilities in gammaproteobacteria (37, 65). Another study indicates that P. entomophila can counteract the Drosophila gut immune response as a result of the secretion of an abundant protease, AprA, which degrades antimicrobial peptides produced by gut epithelia and thereby promotes bacterial persistence (38). However, an AprA-deficient mutant remains virulent to some extent, indicating that P. entomophila virulence is multifactorial, AprA being one virulence factor among others.The secretion of virulence factors is a common mechanism employed by pathogens to compromise host defenses. Several entomopathogenic bacteria (e.g., Photorhabdus luminescens) secrete toxins that allow them to impair host function (8). The starting point of this study was the observation that, in contrast to several other Pseudomonas strains, P. entomophila secretes a strong diffusible hemolytic activity (which is also controlled by the Gac system). This raises the possibility of a link between this hemolytic activity and the pathogenicity of P. entomophila for Drosophila. Indeed, bacterial hemolysins are exotoxins that attack blood cell membranes and cause cell rupture by poorly defined mechanisms. It was conceivable that this hemolytic activity could be a readout for the ability of P. entomophila to damage the epithelial cells of the Drosophila gut, which plays a crucial role in its virulence (10, 33, 63).In this study, the P. entomophila hemolytic factor was identified as a cyclic lipopeptide (CLP) whose structure was elucidated. CLPs are versatile molecules with antimicrobial, cytotoxic, and surfactant properties that are produced by members of the genera Bacillus, Serratia, Burkholderia, and Pseudomonas (31, 41, 43, 50). They are produced by a ribosome-independent mechanism that utilizes multifunctional enzymes called nonribosomal peptide synthetases (NRPSs) (42, 59). These NRPSs are composed of repeated amino acid activation modules containing domains for condensation, aminoacyl adenylation, and thiolation. Modules are responsible for activation and incorporation of amino acids into the growing peptide. A large number of prokaryotic and some eukaryotic organisms synthesize peptide metabolites via this nonribosomal mechanism of biosynthesis (42, 47).Several genes involved in P. entomophila lipopeptide production were identified, three of them encoding NRPSs. The physiological role of this lipopeptide was also investigated, and it does not seem to play a role in the process of virulence towards Drosophila and Dictyostelium or in the P. entomophila biocontrol activity that was uncovered by this study. This suggests that the lifestyle of this newly identified bacterium is probably quite versatile and that lipopeptide production could be required only under specific circumstances. |
| |
Keywords: | |
|
|