High Heterogeneity within Methicillin-Resistant Staphylococcus aureus ST398 Isolates,Defined by Cfr9I Macrorestriction-Pulsed-Field Gel Electrophoresis Profiles and spa and SCCmec Types |
| |
Authors: | M. A. Argudín A. Fetsch B.-A. Tenhagen J. A. Hammerl S. Hertwig J. Kowall M. R. Rodicio A. K?sbohrer R. Helmuth A. Schroeter M. C. Mendoza J. Br?unig B. Appel B. Guerra |
| |
Affiliation: | Departmento de Biología Funcional (Área de Microbiología) and Instituto Universitario de Biotecnología, University of Oviedo, Julían Clavería 6, E-33006 Oviedo, Spain,1. Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany2. |
| |
Abstract: | ![]() During recent years, the animal-associated methicillin-resistant Staphylococcus aureus clone ST398 has extensively been studied. The DNA of these isolates turned out to be refractory to SmaI restriction, and consequently, SmaI is unsuitable for subtyping this clone by standard pulsed-field gel electrophoresis (PFGE). Very recently, ST398 DNA was shown to be digested by Cfr9I, a neoschizomer of SmaI. In the present study, we employed Cfr9I PFGE on 100 German and 5 Dutch ST398 isolates and compared their PFGE profiles, protein A gene variable repeat regions (spa types), and types of the staphylococcal cassette chromosome mec (SCCmec). The isolates (from healthy carrier pigs, clinical samples from pigs, dust from farms, milk, and meat) were assigned to 35 profiles, which were correlated to the SCCmec type. A dendrogram with the Cfr9I patterns assigned all profiles to two clusters. Cluster A grouped nearly all isolates with SCCmec type V, and cluster B comprised all SCCmec type IVa and V* (a type V variant first identified as III) carriers plus one isolate with SCCmec type V. Both clusters also grouped methicillin-susceptible S. aureus isolates. The association of the majority of isolates with SCCmec type V in one large cluster indicated the presence of a successful subclone within the clonal complex CC398 from pigs, which has diversified. In general, the combination of Cfr9I PFGE with spa and SCCmec typing demonstrated the heterogeneity of the series analyzed and can be further used for outbreak investigations and traceability studies of the MRSA ST398 emerging clone.Methicillin-resistant Staphylococcus aureus (MRSA) strains are an important cause of hospital-acquired infections worldwide (8). However, MRSA strains are not confined to health care settings, and during the last 10 years community-acquired MRSA has increasingly been reported (8). In 2003, a clone of MRSA associated with pig farming and not related to the traditional hospital- and community-acquired MRSA emerged in the Netherlands (37), where it now amounts to >30% of human MRSA cases (16). This clone has also been detected in healthy and sick animals, in food of animal origin, and in humans from other European countries, Canada, the United States, the Dominican Republic, and China (5, 7, 31, 38, 39). This emerging MRSA clone belongs to the multilocus sequence type ST398, which includes different spa types (mainly t011, t034, and t108). The majority of the ST398 isolates reported are MRSA, although methicillin-susceptible (MSSA) strains have been described as well (15, 34). Resistance to methicillin and other β-lactam antibiotics is caused by the mecA gene, which is located on a mobile genetic element, the staphylococcal cassette chromosome mec (SCCmec). The SCCmec cassette consists of the mec gene complex, the ccr gene complex, and the junkyard regions. Based on the variability and combinations of these genetic elements, several types of SCCmec and several variants of the types have been described (9). Three SCCmec types (III, IVa, and V) were identified in ST398 isolates (25). However, recent investigations have shown that some ST398 isolates typed as SCCmec type III using the method of Zhang et al. (40) proved to be type V after further sequencing (21, 35).For typing S. aureus, pulsed-field gel electrophoresis (PFGE) of the whole genome by macrorestriction with the SmaI endonuclease is still considered as the “gold standard” (26). However, the isolates of the ST398 clone are nontypeable (NT) by PFGE using SmaI (3, 4). Consequently, comparison between these isolates and the typeable ones from humans and animals is not possible. The nontypeability is due to the action of a novel C5-cytosine methyltransferase which modifies the consensus sequence CmCNGG at the second cytosine (3, 4). Other enzymes with a different recognition sequence from SmaI have been used for PFGE typing of the ST398 clone, including EagI and ApaI (22, 28, 31, 38), but the patterns obtained cannot be compared to S. aureus patterns generated with SmaI. XmaI, a neoschizomer of SmaI that recognizes the same sequence cutting at a different position, only generates partial digestions (3, 4). Recently, the use of Cfr9I, another neoschizomer of SmaI whose activity is not reduced on ST398 methylated DNA, has been recommended. This enzyme had been successfully used for typing SmaI NT macrolide-resistant Streptococcus pyogenes isolates (6, 30), and now it is being applied for typing ST398 isolates, i.e., from human origin (5, 11, 36) and, to a lesser extent, from animals (3, 36). The aim of this study was to characterize a large collection of recent ST398 isolates by Cfr9I PFGE as well as other methods (spa typing, multilocus sequence typing [MLST], and SCCmec typing). Most of them were recovered in Germany from different sources, including animals and foods. |
| |
Keywords: | |
|
|