Metal ion binding to human hemopexin |
| |
Authors: | Mauk Marcia R Rosell Federico I Lelj-Garolla Barbara Moore Geoffrey R Mauk A Grant |
| |
Affiliation: | Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada. |
| |
Abstract: | Binding of divalent metal ions to human hemopexin (Hx) purified by a new protocol has been characterized by metal ion affinity chromatography and potentiometric titration in the presence and absence of bound protoheme IX. ApoHx was retained by variously charged metal affinity chelate resins in the following order: Ni(2+) > Cu(2+) > Co(2+) > Zn(2+) > Mn(2+). The Hx-heme complex exhibited similar behavior except the order of retention of the complex on Zn(2+)- and Co(2+)-charged columns was reversed. One-dimensional (1)H NMR of apoHx in the presence of Ni(2+) implicates at least two His residues and possibly an Asp, Glu, or Met residue in Ni(2+) binding. Potentiometric titrations establish that apoHx possesses more than two metal ion binding sites and that the capacity and/or affinity for metal ion binding is diminished when heme binds. For most metal ions that have been studied, potentiometric data did not fit to binding isotherms that assume one or two independent binding sites. For Mn(2+), however, these data were consistent with a high-affinity site [K(A) = (15 +/- 3) x 10(6) M(-)(1)] and a low-affinity site (K(A)
|
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|