首页 | 本学科首页   官方微博 | 高级检索  
     


On the maintenance of genetic variation: global analysis of Kimura's continuum-of-alleles model
Authors:Reinhard Bürger
Affiliation:(1) Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
Abstract:Methods of functional analysis are applied to provide an exact mathematical analysis of Kimura's continuum-of-alleles model. By an approximate analysis, Kimura obtained the result that the equilibrium distribution of allelic effects determining a quantitative character is Gaussian if fitness decreases quadratically from the optimum and if production of new mutants follows a Gaussian density. Lande extended this model considerably and proposed that high levels of genetic variation can be maintained by mutation even when there is strong stabilizing selection. This hypothesis has been questioned recently by Turelli, who published analyses and computer simulations of some multiallele models, approximating the continuum-of-alleles model, and reviewed relevant data. He found that the Kimura and Lande predictions overestimate the amount of equilibrium variance considerably if selection is not extremely weak or mutation rate not extremely high. The present analysis provides the first proof that in Kimura's model an equilibrium in fact exists and, moreover, that it is globally stable. Finally, using methods from quantum mechanics, estimates of the exact equilibrium variance are derived which are in best accordance with Turelli's results. This shows that continuum-of-alleles models may be excellent approximations to multiallele models, if analysed appropriately.
Keywords:Mutation  Selection balance  Global stability  Genetic variance  Functional analysis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号