Antitoxin DinJ influences the general stress response through transcript stabilizer CspE |
| |
Authors: | Hu Ying Benedik Michael J Wood Thomas K |
| |
Affiliation: | Department of Chemical Engineering, Texas A & M University, College Station, TX 77843-3122, USA. |
| |
Abstract: | Antitoxins are becoming recognized as proteins that regulate more than their own synthesis; for example, we found previously that antitoxin MqsA of the Escherichia coli toxin/antitoxin (TA) pair MqsR/MqsA directly represses the gene encoding the stationary-phase sigma factor RpoS. Here, we investigated the physiological role of antitoxin DinJ of the YafQ/DinJ TA pair and found DinJ also affects the general stress response by decreasing RpoS levels. Corroborating the reduced RpoS levels upon producing DinJ, the RpoS-regulated phenotypes of catalase activity, cell adhesins and cyclic diguanylate decreased while swimming increased. Using a transcriptome search and DNA-binding assays, we determined that the mechanism by which DinJ reduces RpoS is by repressing cspE at the LexA palindrome; cold-shock protein CspE enhances translation of rpoS mRNA. Inactivation of CspE abolishes the ability of DinJ to influence RpoS. Hence, DinJ influences the general stress response indirectly by regulating cspE. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|