首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vivo 13C-NMR studies on the metabolism of the lugworm Arenicola marina
Authors:H P Juretschke  G Kamp
Institution:Institut für Biophysikalische Chemie, Johann Wolfgang Goethe-Universit?t, Frankfurt, Federal Republic of Germany.
Abstract:13C-NMR natural-abundance spectra of specimens of Arenicola marina obtained, showed seasonal changes in the concentration of some metabolites, with the osmolite alanine as well as triacylglyceride storage compounds present at high concentrations. Glycogen was sometimes only barely detectable due to the low natural abundance level of 13C. Glycogenic metabolism of the lugworm A. marina was studied in vivo by 13C-NMR spectroscopy using 13C-labelled glucose. During recovery from a hypoxic period 1-13C]glucose was incorporated into glycogen. 1-13C]Glucose was injected 5 h after the end of hypoxia to guarantee sufficient and reliable 13C labelling of glycogen. An earlier injection of 1-13C]glucose led to considerably diminished incorporation of 13C-labelled glucosyl units into glycogen, probably due to the consumption of the available glucose as fuel for ATP production. No scrambling of 13C into the C6 position of glycogen was observed, indicating a lack of gluconeogenic activity. 13C was also incorporated into the C3 positions of alanine and alanopine. To assign correctly this last 13C-NMR resonance, the compound was synthesized biochemically. No labelling of glycogen was observed when 3-13C]alanine was injected into the coelomic cavity with similar incubation conditions being used. The 13C of 1-13C]glucose, incorporated into glycogen, showed a very low turnover rate in normoxic lugworms as shown by two 13C(1H)-NMR spectra, one obtained 48 h after the other. On the other hand, in hypoxia lugworms the signal due to 13C-labelled glycogen decreased very rapidly proving a high turnover rate. The disappearance of 13C from glycogen during the first 24 h of hypoxia indicates that the last glycosyl units to be synthesized are the first to be utilized. Lugworms were quite sensitive to the 1H-decoupling field used for obtaining the 13C(1H)-NMR spectra, especially at 11.7 T. Using bi-level composite-pulse decoupling and long relaxation delays, no tissue damage or stress-dependent phosphagen mobilization, as judged by 31P-NMR spectroscopy, was observed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号