Three-dimensional visualization of velocity fields downstream of six mechanical aortic valves in a pulsatile flow model |
| |
Authors: | J M Hasenkam M Giersiepen H Reul |
| |
Affiliation: | Department of Thoracic and Cardiovascular Surgery, Aarhus Kommunehospital, Denmark. |
| |
Abstract: | Velocity fields downstream of 27 mm Bj?rk-Shiley Standard, Bj?rk-Shiley Convex-Concave, Bj?rk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), St. Jude Medical and Starr-Edwards Silastic Ball aortic valves were studied in a pulsatile mock circulation. Stroke volume was 70 cm3 and frequency 71 min-1 and 88 min-1. Fluid velocity was measured by a catheter mounted hot-film anemometer probe in a glycerol water mixture one and two diameters downstream of the aortic valve. Velocity fields were dynamically visualized by a three-dimensional technique and revealed qualitative independence of frequency. All profiles were flat in the acceleration phase of systole. From peak systole and throughout the systolic deceleration phase profiles characteristic of the individual valves appeared. The pivoting and tilting disc valves caused a skewed velocity profile with highest velocities downstream of the major orifice and lowest velocities downstream of the minor orifice. The differences between the three investigated Bj?rk-Shiley valves were remarkable. The St. Jude Medical valve generated velocity peaks downstream of the two major orifices and the central slit, and lower velocities in the hinge areas. A rather flat profile with central hollowing was seen downstream of the Starr-Edwards Ball valve. All velocity profiles were more or less dampened two diameters downstream. |
| |
Keywords: | |
|
|