首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance
Authors:Ingrid E Frohner  Christelle Bourgeois  Kristina Yatsyk  Olivia Majer  Karl Kuchler
Institution:Medical University Vienna, Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter;A-1030 Vienna, Austria.
Abstract:Mammalian innate immune cells produce reactive oxygen species (ROS) in the oxidative burst reaction to destroy invading microbial pathogens. Using quantitative real-time ROS assays, we show here that both yeast and filamentous forms of the opportunistic human fungal pathogen Candida albicans trigger ROS production in primary innate immune cells such as macrophages and dendritic cells. Through a reverse genetic approach, we demonstrate that coculture of macrophages or myeloid dendritic cells with C. albicans cells lacking the superoxide dismutase (SOD) Sod5 leads to massive extracellular ROS accumulation in vitro . ROS accumulation was further increased in coculture with fungal cells devoid of both Sod4 and Sod5. Survival experiments show that C. albicans mutants lacking Sod5 and Sod4 exhibit a severe loss of viability in the presence of macrophages in vitro . The reduced viability of sod5 Δ/Δ and sod4 Δ/Δ sod5 Δ/Δ mutants relative to wild type is not evident with macrophages from gp91phox ?/ ? mice defective in the oxidative burst activity, demonstrating a ROS-dependent killing activity of macrophages targeting fungal pathogens. These data show a physiological role for cell surface SODs in detoxifying ROS, and suggest a mechanism whereby C. albicans , and perhaps many other microbial pathogens, can evade host immune surveillance in vivo .
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号